Главная       Научный калькулятор
Меню

Площадь ортогональной проекции плоской фигуры на плоскость

Теорема. Площадь ортогональной проекции плоской фигуры на плоскость есть произведение площади самой фигуры на косинус угла между плоскостью фигуры и плоскостью проекции.
к доказательству Доказательство. Докажем теорему на примере треугольника. Пусть дана плоскость a и треугольник АВС. Рассмотрим общий случай, когда плоскость a и плоскость треугольника лежат под некоторым острым углом друг к другу. Для упрощения решения плоскость a проведем через одну из сторон треугольника, например сторону АВ. Значит после проектирования точки А и В передут в себя, а точка С переедет в точку К. В треугольнике АВС проведем высоту СН из вершины С. В треугольнике АВК соединим точки К и Н. Прямая КН перпендикулярна прямой АВ (КН – проекция прямой СН на плоскость a, СН ^ АВ,? КН ^ АВ по теореме о трех перпендикулярах). Таким образом, угол СНК – двугранный угол между плоскостями, обозначим его за b. Выразим площадь треугольников АВС и АВК и найдем их отношение:

вывод формулы