Главная Научный калькулятор | |
|
Средняя линия треугольника![]() Каждый треугольник имеет три средних линии. Теорема 43. Каждая из средних линий треугольника, соединяющих середины двух данных сторон, параллельна третей стороне и равна её половине. ![]() Рассмотрим треугольник АВС. Опустим высоту СН на сторону АВ. Она разобьёт треугольник на два прямоугольных треугольника АСН и СВН. Проведем медианы НК и НМ соответственно в этих треугольниках По свойству медианы прямоугольного треугольника, проведенной из вершины Н прямого угла, найдем НК=СК и также НМ=СМ. Теперь точки К и М, как равноудаленные от точек Н и С, лежат на перпендикуляре, проведенном к высоте в её середине, а потому отрезок, соединяющий их, параллелен стороне АВ треугольника. Теперь следует рассмотреть треугольник, в котором проведены все три средние линии. Для примера: четырехугольник АКМN является параллелограммом по определению (противоположные стороны параллельны по доказанному ранее). А в параллелограмме противоположные стороны равны, поэтому КМ=СN=1/2CB. Проведем подобные доказательства и получим, KN=1/2AB и MN=1/2AC |