Главная Научный калькулятор | |
|
Основанием прямоугольного параллелепипеда является квадрат со стороной a. Найти расстояние от ребра AA1 до диагонали параллелепипеда BD1Решение: \ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости. \\Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости. \\Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми Прямые АA1 и BD1 скрещивающиеся. Пусть точка О - точка пересечения диагоналей Квадрата ABCD. АA1 перпендикулярна АB AA1 перпендикулярна AD (следует из определения прямоугольног о параралелипипеда) поєтому AA1 перпендикулярна плоскости ABD а значит и любой прямой лежащей в этой плоскости в частности пряммой AO Аналогично доказываем, что прямая BB1 и пряммая АО перпендикулярны Пряммые АО и BD перпендикулярны как диагонали квадрата Итак, ОА перпендикулярна двум пересекающимся прямым BB1 и BD плоскости BDB1, а значит она препендикулрна этой плоскости, а значит и перпендикулярна и любой прямой лежащей в этой плоскости, в частности АО перпендикулярна BD1. Пряммая AA1 не лежащая в плосоксти BB1D параллельна двум прямым єтой плоскости (а именно BB1 и DD1 , следует из свойств прямоугольного параллелипипеда), поэтому она параллельна плоскости BB1D(содержащей пряммую BD1) Далее пряммая АО перпендикулярна прямым AA1 и B1D. По определению расстояние от ребра AA1 до диагонали параллелепипеда BD1 это отрезок АО ABCD - квадрат со стороной равной а, поєтому его диагональ равна AC=a*корень(2) AO=1/2AC=1/2*a*корень(2) ответ: a*корень(2)/2 |