Главная Научный калькулятор | |
|
В прямоугольной трапеции ABCD большая боковая сторона равна 8 см, угол A равен 60 градусов, а высота BH делит основание AD пополам. Найдите площадь трапеции.Решение: Итак, у нас есть прямоугольный треугольник ABH. Угол А равен 60, значит, угол В равен 30 градусов. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, то есть АН=половина АВ=4см. Нам дано, что АД=8см, мы вычислили, что АН=4 см, следовательно, ДН тоже равна 4 см. Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см. Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3. Подставляем в формулу: Площадь трапеции = полусумма оснований умножить на высоту. Площадь трапеции = (4+8)2*4 корня из 3 = 24 корня из трех. В трапеции АВСД уг.А=60гр. , АВ=8см, ДН=НА. S=(a+b)/2 . h=(AD+DC)/ 2 . BH ; BC=DH=AH, AD=2 . AH , AH=1/2 . AB=1/2 . 8=4(cм) -как катет ,что лежит против угла 30 гр.( т-икВАН, уг.Н=90гр. ,уг.А=60гр. ,тогда уг.B= 30гр.) АД=2 .4=8(см), ВС=4см, ВН=АВ . sin60 =8кор.кв.3/2 . S=(8+4)/2 . 8кор.кв.3/2=24кор.кв.3(см.кв.) Ответ:S=24кор.кв.3(см.кв.) |