Главная       Научный калькулятор
Меню

Диагонали параллелограмма равны 7 см и 11 см, а стороны относятся как 6:7. Найти стороны параллелограмма.


Решение:
Дано: АВСД параллелограмм. ВД=7 см, АС=11см, АВ/АД=6/7 
Решение: 1)По свойству парал-ма:Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон: 
пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; значит d1^2+d2^2=2(a^2+b^2) 
2)АВ=6/7*АД 
АС^2+ВД^2=2(AB^2+AД^2) 
121+49=2(36/49АД^2+АД^2) 
85*49=85АД^2 
АД=7 
АВ=6 Ответ: АД=7 см, АВ=6см

Пусть одна сторона параллелограма будет - 6х, а вторая -7х Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон (по св-ву параллелограма):
7²+11²=2*(6x)²+2*(7x)² 170=170х² х²=1 x=1
значит стороны параллелограма будут: 6*1=6 см одна сторона и 7*1=7 см другая сторона
Ответ: 6см одна сторона параллелограма и            7см вторая сторона параллелограма