Главная Научный калькулятор | |
|
Треугольник ABC равнобедр. Угол B=120°. АС=18см. Найти площадь треугольника.Решение: Проводим высоту из вершины B. Она также является медианой и биссектрисой, поэтому треугольник разбивается на 2 треугольника с углами 30, 60, 90, и стороной 9 против угла в 60°. Тогда сторона против 30° равна 3sqrt(3) (например, по теореме синусов), а площадь равна произведению этих двух сторон (на два делить не надо, так как у нас 2 треугольника), и равна 27sqrt(3).
$$ S=\frac{1}{2}*h*AC $$ Проведем высоту h из вершины В, являющуюся также медианой и биссектрисой( по свойствам равнобедренного треугольника), значит получим, что высота равна половине боковой стороны BC треугольника(т.к. противолежит углу в 30°). Теперь по теореме Пифагора: $$ 9=\sqrt{BC^{2}-\frac{BC}{2}^{2}} $$ / Получаем, что BC равно $$ 2\sqrt{6} $$ см, тогда h равно $$ \sqrt{6} $$ .Это значение подставляем в формулу площади подставляем в формулу площади |