Главная       Научный калькулятор
Меню

1'. '.mb_convert_case('найдите', MB_CASE_TITLE, 'UTF-8') объем правильной четырехугольной усеченной пирамиды, высота которой равна 6см, а диагонали оснований 2корень из 2 и 4 корень из 2
2'. '.mb_convert_case('площади', MB_CASE_TITLE, 'UTF-8') оснований двух подобных пирамид равны 20см^2 и 45см ^2. Найдите отношение объемов пирамиды.


Решение:
Начнем со второй задачи. Так как площади подобных фигур относятся как квадрат коэффициента подобия, то k²=20/45=4/9, отсюда k=2/3. Объемы подобных тел относятся как куб коэф. подобия, поэтому V₁/V₂=8/27.
ПЕРВАЯ ЗАДАЧА. Найдем стороны нижнего и верхнего оснований. В основаниях лежат квадраты, т.к. дана правильная усеченная пирамида. Диагонали квадратов известны, то стороны оснований вычислим по теореме Пифагора: а²+а²=(2√2)²                       в²+в²=(4√2)² 2а²=8                                  2в²=32 а²=4                                    в²=16 а=2                                     в=4 Тогда объем равен V=h(S+S₁+√SS₁)=6(4+16+√4*16)=6*28=168