|
Главная
Научный калькулятор
|
|
Как доказать что в правильном восьмиугольнике существуют три параллельные диагонали
Решение: Да, существуют, только не три, а четыре пары параллельных диагоналей, так как в правильном восьмиугольнике четыре пары параллельных сторон. При соединении вершин этих сторон и получаются параллельные диагонали в виде сторон прямоугольников. Для доказательства их параллельности нужно именно это и доказать, используя величины углов. Угол восьмиугольника имеет величину 180*(8-2)/8 = 135 градусов, а между стороной и радиусом 135/2 = 67,5 градусов. Так как диагональ опирается на угол 360*3/8 = 135 градусов, то угол между диагональю и радиусом = (180-135) / 2 = 22,5 градуса Итак, угол в четырёхугольнике между стороной и диагональю составляет 67,5 + 22,5 = 90 градусов. И так можно доказать по всем углам. Значит, эти диагонали являются сторонами прямоугольника, а стороны прямоугольника - параллельны.
|