|
Главная
Научный калькулятор
|
|
1) Катеты прямоугольного треугольника равны 15см и 20см. Найдите длину окружности, диаметром которой является высота, проведенная к гипотенузе. 2) Площадь квадрата равна S. Найдите : а) длину вписанной окружности б) длину дуги, заключенной между двумя соседними точкам
Решение: 1) находим гипотенузу за теоремой Пифагора, AB=25. есть формула нахождения высоты за тремя сторонами: Ha=2корень(p(p-a)(p-b)(p-c))/a p=(a+b+c)/2 подставив в эту формулу данные, находим высоту 12, она есть диаметром, значит r=12/2=6 длина окружности=2пr=12п 2)Sквадрата=a^2 a=корень из S r вписанной окружности для квадрата = a/2 r=S^2/2 длина=2пr=S^2п нарисуй квадрат и вписанный в него круг, точками касания будут середины сторон квадрата, берем те, которые на соседних сторонах и отмечаем эту дугу. угол, на которую она опирается - прямой. это видно по рисунку 90*=п/2 длина дуги=r*альфа=S^2/2*п/2=пS^2/4 площадь вне окружности можно найти отняв от площади квадрата площадь окружности. Sокружности=пr^2=(S^4п)/4 S вне окружности=S-(S^4п)/4
|