Главная       Научный калькулятор
Меню

Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равно 5 корень из 3.


Решение:
Решим эту задачу без применения частной формулы для правильного треугольника:Проведем в правильном треугольника АВС к каждой из сторон высоты: AF, BH, CE. Точка пересечения О. Они будут и высотами и медианами и биссектрисами. Рассмотри треугольник AFC: он прямоугольный. Угол FAC равен 30 (AF - биссектриса)⇒FC=½АС = ½5√3. Находим катет AF: √((5√3)²-(½5√3)²) = √(75-75/4) = √(225/4) = 15/2 Исходя из равенства всех треугольников, полученных в результате построения высот треугольниа АВС, точкой пересечения высоты делятся в соотношении 2:1, т. е. АО=⅔AF⇒AO=⅔*(15/2)=5 см. Это и есть радиус. Площадь S=πr²⇒S=25π Длина окружности L=2πr⇒L=10π Частная формула гласит R=(√3/3)*a⇒R=(√3/3)*5√3=15/3=5 (т. е. верно)