Главная       Научный калькулятор
Меню

Равнобедренный треугольник АВС с основанием ВС вписан в окружность с центром О. Площадь треугольника АВС равна 9√2, угол А = 45°. Прямая, проходящая через точку и середину АС, пересекает сторона ВА в точке М. Найдите площадь треугольника ВМС


Решение:
Сделаем построение по условию. Пусть боковая сторона  АС=а На основании данных (Площадь треугольника АВС равна 9√2, угол А = 45°. ) Площадь по формуле  S=1/2*a^2*sinA Получаем квадрат боковой стороны АС^2=а^2= 2S/sinA Пусть  прямая, проходящая через точку О и середину АС пересекает АС в точке К  АК=КС , тогда ОК – серединный перпендикуляр , проведенный  к  хорде АС Рассмотрим треугольник АМК .  Углы АКМ=90  КАМ=45  АМК=45(180-90-45) Т.е. треугольник АМК .  прямоугольный, равнобедренный Тогда АК=МК = 1/2АС   МК –высота в треугольнике АМС Площадь треугольника S(АМС)=1/2*МК*АС=1/2*(1/2АС)*АС=1/4*АС^2=1/4*a^2=1/4*2S/sinA = =1/4*2*9√2/sin45=1/4*2*9√2/(√2/2) = 9 Тогда площадь треугольника S(ВМС)=S(ABC)-S(AMC)= 9√2-9=9(1-√2) ***возможна другая форма ответа