|
Главная
Научный калькулятор
|
|
Выведите формулу для вычисления координат середины отрезка
Решение: Пусть у нас есть отрезок AB. Считаем, что он расположен в 1-й четверти координатной сетки и не параллелен осям координат (прочие положения отрезка рассматриваются аналогично). Координаты концов отрезка: A(x₁, y₁) и B(x₂, y₂). Допустим, что x₂>x₁. Пусть C - середина отрезка AB с координатами (x, y). Требуется выразить x и y через координаты точек A и B. Определение координаты x. Из точек A, B и C отпустим перпендикуляры на отрезок OX, точки пересечения с осью OX обозначим A₁, B₁ и C₁. AA₁⊥OX BB⊥OX CC⊥OX Т. К. C - середина отрезка AB, то AC=BC. Т. К. AA₁||BB₁||CC₁, то по теореме Фалеса A₁C₁=B₁C₁. Значит, C₁ - середина отрезка A₁B₁. Координаты точки A₁ равны (x₁;0). Координаты точки B₁ равны (x₂;0). Координаты точки C₁ равны (x;0). Длина отрезка A₁C₁ равна x-x₁. Длина отрезка B₁C₁ равна x₂-x. Эти длины равны, т.е. x-x₁=x₂-x ⇔ 2x=x₁+x₂ ⇔ x = (x₁+x₂) / 2. Т. О. Координата x середины отрезка есть полусумма координат x концов отрезка. Определение координаты y. Выполняется аналогично, выполняя проекцию отрезка AB на координатную ось OY. y = (y₁+y₂) / 2 Т. О. Координаты середины отрезка AB есть полусумма соответствующих координат концов отрезка. C(x;y) = ((x₁+x₂) / 2; (y₁+y₂) / 2)
|