Главная       Научный калькулятор
Меню

1. Дан угол с вершиной внутри круга. Доказать, что этот угол тупой.
2. Из вершины А треугольника АВС проведена высота АD. Точки F и Е - середины сторон АВ и АС. Найти периметр DEF, если периметр АВС = 64 см.


Решение:
1.  Возможно, этот угол опирается на диаметр, потому как в противном случае есть контрпример. Продлим одну из сторон угла назад до пересечения с окружностью. Данный угол внешний для треугольника, у которого один из углов 90 градусов, а второй не равняется нулю. Значит, угол больше 90 градусов, но меньше 180 градусов. Значит, данный угол - тупой по определению.
2. В треугольнике АДВ медиана ДF равна половине гипотенузы АВ. Аналогично ДЕ равно половине АС. А ЕF - средняя линия треугольника АВС, параллельная ВС, а значит и равная её половине. Отсюда периметр искомого треугольника равен полупериметру периметра АВС на основании того, что стороны треугольников можно разделить на пары, в каждой из которых сторона треугольника АВС будет вдвое больше стороны треугольника DEF. Ответ: 64/2=32 см.