Главная       Научный калькулятор
Меню

Через середину одной из сторон треугольника провести прямую, делящую периметр треугольника пополам.


Решение:
АВС. АВ = с;  ВС = а;  АС = в. Пусть через т.М - середину АВ=с проводим прямую МО , где т, О находится на ВС. Тогда, из условия: b + (c/2) + OC = (a+b+c)/2 Отсюда ОС = (а/2)  -  ((b/2). Ответ: надо на стороне , как пример а,  поставить точку О так, чтобы ОС = (а-b)/2

Пусть прямую нужно провести через точку Д, середину стороны ВС, а АВ > AC .  На отдельной прямой из некоторой точки К проведем  КМ = АВ и КN = AC. разделим отрезок MN пополам. Пусть точка Т - его середина. Тогда МТ = (АВ - АС)/2.  Отложим отрезок МТ от точки А по стороне АВ. Получаем точку Е. Тогда  ВЕ = АС + АЕ = (АВ + АС)/2. Прямая ДЕ - искомая. Примечание. Я не описываю, как отрезок делится циркулем и линейкой пополам, так как это описано в школьном учебнике.