Главная       Научный калькулятор
Меню

Расстояние между параллельными прямыми равно 4. На одной из них лежит точка C, а на другой - точки A и B, причем треугольник ABC - остроугольный равнобедренный, и его боковая сторона равна 5. Найдите радиус окружности, вписанной в треугольник ABC.


Решение:
Пусть CD - высота треугольника АВС, и равна 4 см, АС=АВ=5 см. По теореме Пифагора АС2=CD2+AD2 25=16+AD2 9=AD2 AD=3 см, АВ=6 см r=корень((p-a)*(p-b)*(p-c)/p), где р - полупериметр р=(5+5+6)/2=8 r=корень((8-5)*(8-5)*(8-6)/8)=корень(3*3*2/8)=корень(2,25)=1,5 см

Опустим перпендикуляр СК - это высота, опущенная на основание равнобедр. тр. АВС. Это и есть данное расстояние между параллельными прямыми. СК = 4.   АС = ВС = 5. Из пр. тр. АСК найдем АК: АК = кор (25-16) = 3 Тогда основание АВ: АВ = 3*2 = 6 Площадь тр-ка: S = (1/2)*АВ*СК = (1/2)*6*4 = 12 Полупериметр: р = (5+5+6)/2 = 8 Тогда радиус вписанной окр-ти: r=S/p = 12/8 = 1,5 Ответ: 1,5

Похожие вопросы: