Главная       Научный калькулятор
Меню

В равнобедренный треугольник АВС (АВ=ВС) вписали окружность. Касательная L к окружности, параллельна прямой АС, пересекает стороны АВ и ВС в точках Т и Р соответственно. Известно, что периметр четырёхугольника АТРС равен 30 см'. '.mb_convert_case('и', MB_CASE_TITLE, 'UTF-8') АС=12 см. Вычислите длину радиуса окружности.


Решение:
АТРС-равнобедренная трапеция. У трапеции, описанной около четырехугольника (трапеции в нашем случае) сумма противоположных сторон равна. ТР+АС=30/2=15 АС=12см, тогда ТР=15-12=3см АТ+РС=15 и так как АТ=РС, то АТ=РС=15/2=7,5см Диаметр окружности является ее высотой ТН (опусти перпендикуляр из Т на АС). АН=(АС-ТР)/2=(15-12)/2=4,5см По теоремме Пифагора: ТН=√(АТ^2-AH^2)=√(56,25-20,25)=√36=6см ТН-это диаметр, а радиус равен его половине, т.е. r=ТР/2=6/2=3см

Похожие вопросы: