Главная       Научный калькулятор
Меню

Доказать, что сумма расстояний от любой точки, взятой внутри правильного многоугольника, до всех прямых, содержащих его стороны, есть величина постоянная. (случай общий)


Решение:

Пусть дан правильный многоугольник со стороной равной а. Соединим любую точку  А, взятую внутри правильного многоугольника  со всеми вершинами многоугольника и проведем перпендикуляры на все стороны. Обозначим  их длины d1,d2,d3,…,dn. Площадь многоугольника S=1/2*a*(d1+d2+d3+…+dn). Отсюда d1+d2+d3+…+dn=2S/a. Значит сумма расстояний не зависит от выбора точки.



Похожие вопросы: