Главная Научный калькулятор | |
|
Доказать теорему: Если точка равноудалена от всех сторон многоугольника, то она проектируется на его плоскость в центр вписанной окружности.Решение: SO перпендикуляр к плоскости многоугольника. Рассмотрим треугольники SOM, SOQ, SOP, SON. Они все равны (прямоугольный, гипотенузы равны, а катет общий), тогда отрезки OM, OQ, OP, ON равны. Наконец, по теореме о трех перпендикулярах OM перпендикулярно AB, OQ - AD, OP - CD, ON - BC. т.к. Длины отрезков равны, а расстояние от точки до прямой измеряется по перпендикуляру, опущенному из этой точки на прямую, то О равноудалена от сторон многоугольника. т.к. О принадлежит плоскости многоугольника, то О - центр вписанной окружности, ч. т. д. Похожие вопросы:
|