Главная Научный калькулятор | |
|
Точка А лежит в плоскости, точка В на расстоянии 12,5 метров от этой плоскости. Найдите расстояние от плоскости до точки М, делящей отрезок АВ в отношении АМ: МВ=2:3Решение: У задачи 2 способа решения. 1 способ (если АВ перпендикулярна плоскости) В этом случае необходимо найти АМ: АМ:МВ = 2:3, АВ = АМ + МВ => 2х + 3х = 12,5 5х = 12,5 х = 2,5 АМ = 2х = 2 * 2,5 = 5 (м) 2 способ (если АВ является наклонной к плоскости) Необходимо найти расстояние от точки М до плоскости (длину отрезка МD). Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ. Треугольники АВС и АDМ подобны по первому признаку. => AM/AB = MD/BC, АВ = АМ + ВМ MD = (12,5 * 2) / 5 = 5 (м) Похожие вопросы:
|