Главная       Научный калькулятор
Меню

Диагонали ромба "abcd" пересекаются в точке "о"'. '.mb_convert_case('докажите', MB_CASE_TITLE, 'UTF-8'), что прямая "bd" касается окружности с центром "а" и радиусом, равным "ос".


Решение:
Доказательство.  Пряма BD проходит содержит диагональ ромба. Диагонали ромба пересекаются и в точке пересечения – точке О делятся пополам. Диагонали ромба пересекаются под прямым углом. Поэтому расстояние AO=R=OC, и AO перпендикулярно ВД, значит BD будет касательной к окружности с центром в точке А и радиусом равным ОС с точкой касания О.. Доказано.

Похожие вопросы: