|
Главная
Научный калькулятор
|
|
Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая BD касается окружности с центром А и радиусом, равным ОС. нужно решение
Решение: Доказательство. Пряма BD содержит диагональ ромба. Диагонали ромба пересекаются и в точке пересечения – точке О делятся пополам. Диагонали ромба пересекаются под прямым углом. Поэтому расстояние AO=OC=R, и AO перпендикулярно ВД, значит BD будет касательной к окружности с центром в точке А и радиусом равным ОС с точкой касания О. Доказано. Похожие вопросы:
|