Главная Научный калькулятор | |
|
Дан прямоугольный треугольник АВС. Известно, что гипотенуза ВС равна 26 см. А площадь всего треугольника 120 см^2. Найти меньший катет.Решение: Пусть меньший катет равен Х. Тогда больший катет равен √(676 - Х²). Согласно формуле площади прямоугольного треугольника Х * √(676 - Х²) / 2 = 120 Х * √(676 - Х²) = 240 Х² * (676 - Х²) = 57600 Х⁴ - 676 * Х² + 57600 = 0 Рещив это, уравнение, как биквадратное, получаем Х₁ = 10 Х₂ = 24 Следовательно, меньший катет равен 10 см. Похожие вопросы:
|