Главная Научный калькулятор | |
|
Найдите отношение двух сторон треугольника, если его медиана, выходящая из их общей вершины, образует с этими сторонами углы в 30° и 90°Решение: пусть меньшая боковая сторона а, большая b, а основание (ещё большее)) - с. Обозначим Ф МЕНЬШИЙ угол между медианой и основанием. Применим теорему синусов к 2 треугольникам, образованным медианой, сторонами и половинками основания. a/sin(Ф) = (с/2)/sin(90°); b/sin(180°-Ф) = (с/2)/sin(30°); Отсюда легко получается b/а = 2 любопытно, что биссектриса угла 120° делит основание в отношении 1/2, то есть отрезает треть. Похожие вопросы:
|