Главная Научный калькулятор | |
|
Продолжения боковых сторон трапеции ABCD (рис. 148) пересекаются в точке О. Найдите ВО и отношение площадей треугольников ВОС и AOD, если AD = 5см, ВС = 2см, АО = 25см.треугольники AOD и BOC подобны по трем углам: уг.AOD-общий уг.OCB=уг.ODA (они прямые) уг.OBC=уг.OAD (вытекает из предыдущих равенств) Т.к. эти треугольники подобны, отношения соответсвующих сторон равны, т.е. BC/AD=BO/AO подставляем числа и находим BO: 2/5=BO/25 5*BO=2*25 5*BO=50 BO=10 Теперь находим отношение площадей: S(BOC)/S(AOD)=(1/2*OC*BC)/(1/2*OD*AD)=OC*BC/OD*AD=OC/OD*BC/AD BC/AD=2/5 так как отношение соответсвующих сторон равны OC/OD=BC/AD=2/5 S(BOC)/S(AOD)=2/5*2/5=4/25=0,16 Ответ: BO=10, отношение площадей = 0,16. Похожие вопросы:
|