Главная Научный калькулятор | |
|
Найдите площадь треугольника АВС, если АС=20, ВС=2 корня из 97, а медиана ВМ равна 12.Решение: Из свойств медианы треугольника, имеем Mb=(1/2)*sqrt(2*(a^2+c^2)-b^2) в нашем случае a=2*sqrt(97) b=20 Mb=12 тогда 12=(1/2)*sqrt(2*(388+c^2)-400) 24=sqrt(2*(388+c^2)-400) 24=sqrt(376+2c^2 576=376*2c^2 200=2c^2 c^2=100 =>c=10 Площадь треугольника находим по формуле Герона S=sqrt(p(p-a)(p-b)(p-c), где p=(a+b+c)/2 p=(10+20+2sqrt(97))/2=15+sqrt(97) S=sqrt((15+sqrt(97))*(15+sqrt(97)-sqrt(97))*(15+sqrt(97)-10)*(15+sqrt(97)-20))=sqrt(15+sqrt(97))*15*(5+sqrt(97)*sqrt(97)-5))= =sqrt(15*(15+sqrt(97))*(97-25))=sqrt(15*72*(15+sqrt(97))=sqrt(1080*(15+sqrt(97)) Похожие вопросы:
|