Главная       Научный калькулятор
Меню

Сечение головки газового вентиля имеет форму правильного треугольника, сторона которого равна 3см. Каким должен быть минимальный диаметр круглого железного стержня, из которого изготовляют вентиль?


Решение:
Из условия задачи понятно, что нам необходимо найти радиус окружности описанной вокруг правильного треугольника. А радиус окружности описанной вокруг любого треугольника равен: R=(а*в*с)/4S, Где а,в,с - стороны треугольника, а S - площадь треугольника. Находим площадь правильного треугольника - $$ \frac{\sqrt{3}}{4} $$*$$ a^{2} $$. Подставляем всё в формулу: $$ R=\frac{a^{3}}{4*\frac{\sqrt{3}}{4}*a^{2}}=\frac{a}{\sqrt{3}} $$  $$ R=\frac{3}{\sqrt{3}}=\sqrt{3} $$  минимальный диаметр = 2*корень из 3 

Похожие вопросы: