Главная
Научный калькулятор
Меню
Алгебра
Геометрия
Основные понятия
Аксиомы планиметрии
Углы
Перпендикулярные и параллельные прямые
Перпендикуляр и наклонная
Круг (окружность)
Треугольник
Четырехугольник
Параллелограмм
Трапеция
Многоугольники
Основные понятия стереометрии
Аксиомы стереометрии
Прямые в пространстве
Пересекающиеся прямые
Параллельные прямые
Скрещивающиеся прямые
Прямая и плоскость в пространстве
Перпендикулярность прямой и плоскости
Параллельность прямой и плоскости
Угол между прямой и плоскостью
Теорема о трех перпендикулярах
Формула двойного проектирования
Плоскости в пространстве
Пересекающиеся плоскости
Параллельность плоскостей
Перпендикулярность плоскостей
Площадь проекции плоской фигуры на плоскость
Многогранники:
Пирамида
Призма
Тела вращения:
Цилиндр
Конус
Шар (Сфера)
Объем тел вращения
Задачи по геометрии
Примеры решений
Вспомогательные материалы:
Таблицы Брадиса
Исследование функций
Асимптоты.
Первая производная.
Вторая производная.
Графики функций
Задачи по функциям
Тригонометрия
Тригонометрические неравенства
Треугольник
:
Равнобедренный треугольник
:
Прямоугольный треугольник
:
Четырехугольник
:
Параллелограмм
:
Ромб
:
Прямоугольник
:
Трапеция
:
Многоугольники
:
Круг и окружность
:
Прямые и плоскости
:
Пирамида
:
Системы координат
:
Цилиндр
:
Конус
:
Углы
:
Призма
:
Параллелепипед
:
Сфера и Шар
:
Построения
Задания »
Прямоугольный треугольник
В прямоугольном треугольнике с углом 30° и меньшим катетом 6 см проведены средние линии. Найти периметр треугольника, образованного средними линиями.
В прямоугольном треугольник катет равен b, а противолежащий ему угол β.Выразите периметр треугольника через b и β
Определите, является ли треугольник АВС прямоугольным, если сумма его внешних углов при вершинах А и В равна 270°.
В прямоугольном треугольнике биссектриса прямого угла делит гипотенузу в соотношении 1:2. В каком отношении делит гипотенузу опущенная на нее высота?
В прямом параллелепипеде ABCDA1B1C1D1 основанием служит ромб. Сторона ромба равна
а,
угол BAD=60о. Диагональ параллелепипеда B1D составляет с плоскостью боковой грани угол 45о. Найдите площадь полной поверхности параллелепипеда.
Точка М удалена от каждой стороны ромба на 20 см. Найти расстояние от точки М до плоскости ромба, если его диагонали равны 30 см и 40 см.
Из точки М проведены к плоскости а наклонные МА, МВ и перпендикуляр МС, равный а. Угол между каждой наклонной и перпендикуляром 45°. Найдите: 1) площадь треугольника АВС, если проекции наклонных перпендикулярны;2) угол между наклонными.
Расстояние от точки М, равноудаленной от всех вершин правильного шестиугольника ABCDEF, до его плоскости равно а АВ - а Найдите: 1) расстояние от точки М до вершин шестиугольника 2) угол, образованный наклонной МВ и ее проекцией на плоскость шестиугольника.
Боковое ребро прямого параллелепипеда равно 5 см, стороны основания равны 6 и 8 см, а одна из диагоналей основания равна 12 см. Определить диагонали параллелепипеда
При каком соотношении между измерениями a, b, с, прямоугольного параллелепипеда его диагональное сечение будет квадратом?
Дано: треугольник ABC-прямоугольный угол A=90°,AB=20 см AD-высота треугольника=12 см Найти: AC и косинус угла C&
1)в прямоугольном треугольнике:1)а=9дм, b=12дм. Найдите c,h,a1, b1, где a1,b1-проекции катетов на гипотенузу c; 2) a=12дм, c=13дм, Найдите b,h,a1.b1.
Высота конуса 7 см. Осевым сечением является прямоугольный треугольник. Найдите его площадь.
Длина стороны ромба abcd равна 5см. Длина диагонали bd равна 6см. Через точку О пересечены деагонали ромба проведена прямая ОК перпендикулярна его плоскости. Найдите расстояние от точки К до вершины ромба ОК равное 8см
Найдите площадь прямоугольного треугольника, если его гипотенуза равна 10см, а сумма катетов сотавляет 14см. И сейчас
Из середины d равносторонего стороны вс треугольника авс проведён перпендикуляр dm к прямой ас. Найти am если АВ =12 см
Основание пирамиды - прямоугольный треугольник с острым углом альфа. Расстояние от основания высоты пирамиды до вершины этого угла равно в. Все двугранные углы при основании пирамиды равны бета. Найти объём пирамиды. Найти площадь основания
В прямоугольном параллелепипеде АВСDA1B1C1D1 известно, что СА1=18, СD=8,AD=14. Найдите длину ребра BB1
Из точки к плоскости проведены две наклонные длинами 10 см и 17 см, проекции которых отличаются на 9 см. Найти эти проекции
1) Боковое ребро правильнойтреугольной пирамиды равно 6см и составляет с плоскостью основания угол 60°. Найдите объём пирамиды.
В треугольнике ABC ( угол = 90°) CH - высота, угол A = 30° AB = 34 найти BH
Прямоугольный треугольник с катетом 3 см и противолежащим ему углом 30 грудусов, вращается вокруг данного катета. Найти полную поверхность данного вращения
В основании прямой призмы АВСА1В1С1 лежит треугольник АВС, у которого угол С=90°, угол В=30°, АВ=4см. Найдите объем призмы, если угол ВАВ1=45град.
Высота прямоугольного треугольника делит гипотенузу на отрезки длиной 18см и 32см. Найти площадь треугольника?
Прямая, пересекая две параллельные прямые, образует угол 30°. Длина отрезка между параллельными прямыми 17.6 дм. Найдите расстояние между параллельными прямыми.
Один из острых углов прямоугольного треугольника 50°. Найдите угол между биссектрисой прямого угла и гипотенузой
В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30°. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол 45°. Найдите объем
Найдите острые углы прямоугольного треугольника, если его катеты равны 2.5 корня из 3 и 2.5 см.
Найдите синус косинус и тангенс меньшего острого угла прямоугольного треугольника с катетом 40 см и гипотенузой 41 см
Что такое котангенс? Что такое Коэффициент Подобия?2 признак Подобия треугольников? Значение синуса и косинуса углов?
←
1
2
3
4
5
6
7
8
9
...
23
24
→